Abstract

In this work, a comparative study of three control strategies for the position control of a permanent magnet DC motor with dead zone is presented. The strategies analyzed are the classical PI controller, a new approach based on a linear controller with double integral effect, and the Inverse Dead Zone approach. Through the results here exposed it is shown that the new approach based on a controller with double integral effect results in a control system capable of achieving smaller position error, reducing the undesirable stick/slip effect without inducing high frequency oscillations or chattering in the control variable. In addition, and thanks to its linear nature, it is possible to determine stability and robustness of the resulting control system by means of the classical margins of gain and phase making this approach suitable for an engineering context

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.