Abstract

The original micropatterning technique on gold, although very efficient, is not accessible to most biology labs and is not compatible with their techniques for image acquisition. Other solutions have been developed on silanized glass coverslips. These methods are still hardly accessible to biology labs and do not provide sufficient reproducibility to become incorporated in routine biological protocols. Here, we analyzed cell behavior on micro-patterns produced by various alternative techniques. Distinct cell types displayed different behavior on micropatterns, while some were easily constrained by the patterns others escaped or ripped off the patterned adhesion molecules. We report methods to overcome some of these limitations on glass coverslips and on plastic dishes which are compatible with our experimental biological applications. Finally, we present a new method based on UV crosslinking of adhesion proteins with benzophenone to easily and rapidly produce highly reproducible micropatterns without the use of a microfabricated elastomeric stamp.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.