Abstract

Density functional theory (DFT) calculations within the generalized gradient approximation (GGA) were performed to study phase transitions in lithium orthosalts Li3XO4 (X = P, As, V). The equilibrium crystal structure parameters and the total energies of the Li3XO4 polymorphs were calculated for the β- and γ-phases. The relative lattice stabilities of the two polymorphs were examined in the light of various peculiarities at atomic scale. The β-polymorph was systematically found to be the most stable one, agreeing well with experimental results. Using an all electron full potential method, we have investigated densities of states and the topology of charge density through the Bader’s quantum theory of “atoms in molecules” (AIM) along with electrostatic energy density maps in order to evaluate factors governing the stability of each polymorph. Higher stability of the β-polymorph or differences in energy between β- and γ-phases according to the nature of X along with the experimental temperatures of phase transitions can be connected to several microscopic features, including differences in constraint within XO4 tetrahedron or chemical bonding characteristics. This new approach can be applied to other phase stability studies, including the family of Li2MSiO4, which is of great interest for cathode materials in lithium batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call