Abstract
The chemical vapor deposition (CVD) diamond and diamond-like carbon (DLC) films are deposited on the cobalt cemented tungsten carbide (WC-Co) cutting tools respectively using the hot filament chemical vapor deposition (HFCVD) technique and the vacuum arc discharge with a graphite cathode. The scanning electron microscope (SEM), optical interferometer profiler and Raman spectroscopy were adopted to characterize the as-deposited diamond and DLC films. The cutting performance of as-fabricated CVD diamond and DLC coated milling tools is evaluated in dry milling SiC particulate reinforced Al-metal matrix composite material (Al/SiC-MMCs), comparing with the uncoated WC-Co milling tool. The milling results demonstrate that the uncoated WC-Co milling tool suffers severest wear in its circumferential cutting edge, while the wear of DLC coated milling tool is slightly lower. Comparatively, the CVD diamond coated milling tool exhibits much stronger wear resistance. The wear on its circumferential cutting edge is less than 0.07 mm at the end of milling test, only a half of that of DLC coated milling tool. This result is attributed to the extremely high hardness and strong adhesive strength of CVD diamond film covered on the WC-Co milling tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.