Abstract

In this work, a cationic surfactant, dodecyltrimethylammonium bromide (DTAB), and an anionic surfactant, sodium dodecylsulfonate (SDSO(3)) or sodium dodecylsulfate (SDSO(4)), were mixed in an equimolar ratio to prepare SDSO(3)-DTAB and SDSO(4)-DTAB binary mixtures. The phase behavior, structure, and morphology of these two surfactant mixtures were investigated by differential scanning calorimetry, synchrotron X-ray scattering, freeze-fracture electron microscopy, and Fourier transform infrared spectroscopy. It was found that upon heating, both of the two systems transform from multilamellar crystalline phase to liquid crystalline (or fluid) phase. It is interesting to find that, although SDSO(3) has a lower molecular weight, the crystalline phase of SDSO(3)-DTAB shows much higher thermostability as compared with that of SDSO(4)-DTAB. Other than this, we observed a large difference in the repeat distances of the two crystalline phases. More interestingly, at 60 °C in the fluid phases, cylindrical micelles formed in the SDSO(3)-DTAB system, while spherical micelles were observed in the SDSO(4)-DTAB system. Our present work demonstrates that a subtle difference in the headgroup structure of the anionic component markedly affects the thermostability, packing structure, and morphology of the surfactant mixtures, which suggests the importance of the match of the head-head and tail-tail interactions between the cationic and anionic surfactants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.