Abstract

A series of polyaniline (PANI)/Na +-montmorillonite (MMT) clay and PANI/organo-MMT nanocomposite materials have been successfully prepared by in situ emulsion polymerization in the presence of inorganic nanolayers of hydrophilic Na +-MMT clay or organophilic organo-MMT clay with DBSA and KPS as surfactant and initiator, respectively. The as-synthesized Na +-PCN and organo-PCN materials were characterized and compared by Fourier transformation infrared (FTIR) spectroscopy, wide-angle powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). Na +-PCN materials in the form of coatings with low loading of Na +-MMT clay (e.g., 3 wt.%, CLAN3) on cold-rolled steel (CRS) were found much superior in corrosion protection over those of organo-PCN materials with same clay loading based on a series of electrochemical measurements of corrosion potential, polarization resistance, corrosion current and impedance spectroscopy in 5 wt.% aqueous NaCl electrolyte. The molecular weights of PANI extracted from PCN materials and neat PANI were determined by gel permeation chromatography (GPC) with NMP as eluant. Effects of material composition on the gas permeability, optical properties and electrical conductivity of neat PANI and a series of PCN materials, in the form of free-standing film, solution and powder-pressed pellet, were also studied by gas permeability analyzer (GPA), ultraviolet–vis spectra and four-point probe technique, respectively.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call