Abstract

The BHE strain of rat is characterized by early hyperinsulinemia and maturity onset hyperlipemia and hyperglycemia. Since we have previously shown that insulin is required for the coordinate regulation of a number of lipogenic enzymes in rat liver, a comparative study of the hepatic activities of the rate-limiting enzymes of lipid synthesis and the in vivo rates of fatty acid and cholesterol synthesis in the liver and the adipose tissue has been conducted in BHE and Wistar rats. In the liver, BHE rats had 25–28% higher acetyl-CoA carboxylase and fatty acid synthetase activities as measured in vitro but a 100% greater rate of fatty acid synthesis in vivo as compared to Wistar animals. These results strongly suggest that factors other than the amount of acetyl-CoA carboxylase, such as allosteric effectors, must be operating in vivo, thereby facilitating the carboxylase to function at its maximal capacity in BHE rats. Such a regulation of fatty acid biosynthesis by allosteric modifiers of acetyl-CoA carboxylase is already known, although the mechanism of this regulation is not fully understood. BHE rats also exhibited a twofold greater rate of fatty acid synthesis in the adipose tissue compared to the Wistar rats. Thus, increased lipogenic capacity and increased lipogenesis in BHE rats are consistent with early hyperinsulinemia in this strain. Furthermore, BHE rats had 71% more 3-hydroxy-3-methylglutaryl CoA reductase activity with a 97% greater rate of cholesterol synthesis as compared to Wistar rats. In contrast, cholesterol 7α-hydroxylase activity was only 20% greater in BHE rats compared to Wistar rats, suggesting that the BHE rat does not have the capacity to degrade cholesterol to bile acids at a rate commensurate with the increased rate of cholesterol synthesis. This difference in synthesis versus degradation might account for the hypercholesterolemia which occurs in BHE rats, but not in Wistar rats.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.