Abstract

Extracellular laccase produced by the wood-rotting fungus Cerrena unicolor was immobilized covalently via glutaraldehyde to cellulose-based carrier Granocel. Laccase was partially purified by membrane concentration and diafiltration followed by precipitation with acetone. Five-fold increase in the measured activity of immobilized enzyme was obtained when six times purer laccase was used for immobilization. For the best preparation, with very high activity of 2053 U per 1 mL of the carrier, thermal- and pH-stability, and activity profiles were determined. Experiments carried out in a batch reactor showed that k cat/ K m for immobilized enzyme (0.65) is three times lower than the value obtained for the native laccase (2.19) whereas k cat/ K m estimated from continuous reactor (1.50) is notably closer to that for the native enzyme. Continuous process probably reflects more precisely kinetics of the reaction accompanied by simultaneous product precipitation on the carrier’s surface. Operational stability of immobilized laccase was tested in continuous mode operation with ABTS, guaiacol and trichlorophenol as substrates and showed that packed-bed reactor is unprofitable system for laccase immobilized on Granocel carrier due to the high bed compaction. However, excellent stability of the preparation was noted under 20 successive runs in the well mixed tank reactor and better ability towards trichlorophenol biotransformation was observed in the case of immobilized laccase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call