Abstract

The study demonstrates the use of bacterial magnetic nanoparticles (BMNPs) as a drug carrier for the anticancer drug. BMNPs extracted from Magnetospirillum gryphiswaldense MSR-1, characterized using microscopic and spectroscopic methods. Drug conjugates were developed by direct binding of crizotinib with lipid membrane of BMNPs (CM) and also by using crosslinkers such as glutaraldehyde (CMG) and 3-aminopropyltriethoxysilane (APTES) (CMA). The developed conjugates were characterized using microscopic and spectroscopic methods. Drug loading capacity was 670 µg/ml for CM and 162.08 µg/ml and 243.15 µg/ml for CMG and CMA respectively. The drug loading efficiency of drug conjugates CM, CMG and CMA were found to be 67%, 16.2% and 24.3%. The drug release assay revealed slow and stable discharge of crizotinib from CM conjugate (8.2%) compared to CMG (88.33%) and CMA (58.46%) at 48 h. The cytotoxicity of CM was found to be high in comparison with BMNPs, CMG, CMA and crizotinib as tested on cell lines: A549, MCF-7 and HeLa. Our study establishes that the direct attachment of crizotinib with BMNPs shows better coupling with higher loading efficiency and long-term release compared to use of linkers. Further studies are needed to validate the results using animal models and also for targeted drug delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call