Abstract

This paper is concerned with classical concave cost multi-echelon production/inventory control problems studied by W. Zangwill and others. It is well known that the problem with m production steps and n time periods can be solved by a dynamic programming algorithm in O(n 4 m) steps, which is considered as the fastest algorithm for solving this class of problems. In this paper, we will show that an alternative 0–1 integer programming approach can solve the same problem much faster particularly when n is large and the number of 0–1 integer variables is relatively few. This class of problems include, among others problem with set-up cost function and piecewise linear cost function with fewer linear pieces. The new approach can solve problems with mixed concave/convex cost functions, which cannot be solved by dynamic programming algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.