Abstract

In the capillary electrophoretic separation of primary amine enantiomers using (+)-(18-crown-6)-tetracarboxylic acid (18C6H4) as a chiral selector, the presence of run buffer constituents such as tris(hydroxymethyl)aminomethane (Tris) or Na+ competing with analytes for 18C6H4, diminishes the effectiveness of 18C6H4. In order to determine appropriate buffer systems for 18C6H4, various run buffer cationic components including Tris, 1,3-bis[tris(hydroxymethyl)methylamino]propane, bis(2-hydroxyethyl)iminotris(hydroxymethyl)methane, triethanolamine, tetramethylammonium, and Na+ were compared. Quantitative studies of the effects of the competitive constituents were carried out by measuring the electrophoretic mobilities of histidine as a function of the 18C6H4 concentration. We also derived a simple equation to estimate the optimal chiral selector concentration for a maximum mobility difference in the presence of a competitive inhibitor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.