Abstract

Seaweed has attracted considerable attention as a potential biofuel feedstock. The pyrolytic and kinetic characteristics of maize straw and the seaweed Ulva pertusa were studied and compared using heating rates of 10, 30 and 50°C min−1 under an inert atmosphere. The activation energy, and pre-exponential factors were calculated by the Flynn-Wall-Ozawa (FWO), Kissinger-Akahira-Sunose (KAS) and Popescu methods. The kinetic mechanism was deduced by the Popescu method. The results indicate that there are three stages to the pyrolysis; dehydration, primary devolatilization and residual decomposition. There were significant differences in average activation energy, thermal stability, final residuals and reaction rates between the two materials. The primary devolatilization stage of U. pertusa can be described by the Avramic-Erofeev equation (n = 3), whereas that of maize straw can be described by the Mampel Power Law (n = 2). The average activation energy of maize straw and U. pertusa were 153.0 and 148.7 KJ mol−1, respectively. The pyrolysis process of U.pertusa would be easier than maize straw. And co-firing of the two biomass may be require less external heat input and improve process stability. There were minor kinetic compensation effects between the pre-exponential factors and the activation energy.

Highlights

  • In recent years, marine origin biomass such as seaweed, has attracted considerable attention as a potential biofuel feedstock

  • Stage II was composed of two zones for maize straw, with zone I occurring as the temperature increased from T1 to T3 with a maximum weight loss point at T2 and zone II occurring as the temperature increased from T3 to T5 with a maximum weight loss point at T4

  • The pyrolysis of biomass can be influenced by the choice of biomass type, pyrolytic temperature, and heating rate

Read more

Summary

Introduction

Marine origin biomass such as seaweed, has attracted considerable attention as a potential biofuel feedstock. As a potential biofuel feedstock, macroalgae seaweeds have a number of desirable features, such as fast growth, high biomass conversion rate, short growth cycle, ease of handling and the potential for zero net CO2 emissions. In terms of cell wall construction and biochemical elements, these green algae most closely resemble higher plants. Maize straw can be used for pyrolytic oil production using recently developed technologies such as fast pyrolysis [8]. Maize straw is chosen as a representative of terrestrial crops composed of hemicelluloses, cellulose and lignin, to compare to U. pertusa in terms of pyrolytic and kinetic characteristics. The average activation energy, pre-exponential factors, and reaction orders associated with pyrolysis were calculated to facilitate the efficient design, operation, and modeling of pyrolytic and related thermo-chemical conversion systems for both algae and higher plants

Results and Discussion
Conclusions
Materials and Methods
Method
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.