Abstract

Following on a study of Si dissolution in molten Al, the effect of gas agitation is examined. The effects of gas flow rate, liquid bulk velocity, the position of a top injection lance, and bath temperature on the dissolution rate are quantified. A higher gas flow rate produced larger bubbles while bubble frequency remained relatively unchanged. This resulted in larger bubble-induced fluctuating velocities which in turn increased the dissolution rate. At lower bulk velocities, the effect of gas agitation is localized around the lance. By increasing the velocity, the effect of gas agitation is transported further into the bath. The dissolution rate enhancement varies with increasing bulk velocity, and explanations are provided. When combined with a bulk flow, gas agitation increases the dissolution rate regardless of lance position. Also, the enhancement of dissolution rate due to gas injection decreases at higher superheats, as the higher bath temperature increases the mass boundary thickness. In addition, the dissolution rate without gas agitation (single-phase flow) and with gas agitation (two-phase flow) is compared in terms of mean mass transfer coefficients. It was found that for the same liquid bulk velocities, the mean mass transfer coefficients are higher in two-phase flow than in single-phase flow. Finally, an increment to the single-phase flow bulk velocity that would be required to gain parity with the two-phase flow dissolution rate rise is demonstrated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.