Abstract
Systematic designs to achieve normally-off operation and improved device performance for Al0.26Ga0.74N/AlN/GaN high electron mobility transistors (HEMTs) grown on a Si substrate are investigated in this work. The step-by-step approach includes: (1) devising a thin AlGaN/AlN composite barrier, (2) introducing fluoride ions within the active region by using CF4 plasma treatment, (3) growing the Al2O3 oxide passivation layers within gate-drain/source regions by using a cost-effective ozone water oxidization technique, and (4) integrating a metal-oxide-semiconductor gate (MOS-gate) design with high-k Al2O3 gate dielectric. Devices with four different evolutionary gate structures have been compared and studied. Variations of threshold voltage (Vth), Hooge coefficients (αH), maximum drain-source current density (IDS, max), maximum extrinsic transconductance (gm, max), gate-voltage swing (GVS) linearity, two-terminal gate-drain breakdown/turn-on voltages (BVGD/Von), on/off current ratio (Ion/Ioff), and high-temperature characteristics up to 450K are also investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.