Abstract

Spinel ZnFe2O4 nanoparticles (NPs) were successfully synthesized by a simple microwave irradiation method (MIM) using glycine as the fuel. For the comparative study purpose, it was also prepared by conventional heating (CHM) method. Powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR), high resolution scanning electron microscope (HR-SEM), high resolution transmission electron microscope (HR-TEM), energy dispersive X-ray (EDX) spectra, selected area electron diffraction (SAED) analysis showed that the samples were pure phase spinel ZnFe2O4 nanoparticles-like morphology without any other secondary phase impurity. UV-Visible diffuse reflectance spectra (DRS) and room temperature photoluminescence (PL) spectra were confirmed the optical bandgap ([Formula: see text] and defects state of the samples. The calculated [Formula: see text] values of the samples are 1.91[Formula: see text]eV and 2.08[Formula: see text]eV for ZnFe2O4-MIM and ZnFe2O4-CHM, respectively. Vibrating sample magnetometer (VSM) analysis show the Ms value is 37.66[Formula: see text]emu/g for ZnFe2O4-MIM, which is higher than ZnFe2O4-CHM (24.23 emu/g) sample, which confirm both the products showed superparamagnetic behavior. ZnFe2O4-MIM was found to have higher surface area than ZnFe2O4-CHM, which in turn leads to the improved performance toward the photocatalytic degradation (PCD) of 4-chlorophenol (4-CP) and it was found that the sample ZnFe2O4-MIM show higher PCD efficiency (91.43%) than ZnFe2O4-CHM (84.65%), also the samples show high activity, good reusability, remarkable stability and environmentally friendly materials for industrial and technological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.