Abstract

We evaluate the minimum energy configuration (MM) and binding free energy (QM/MM and QM) of CO2 to Rubisco, of fundamental importance to the carboxylation step of the reaction. Two structural motifs have been used to achieve this goal, one of which starts from the initial X-ray Protein Data Bank structure of Rubisco's active centre (671 atoms), and the other is a simplified, smaller model (77 atoms) which has been used most successfully, thus far, for study. The small model is subjected to quantum chemical density functional theory (DFT) studies, both in vacuo and using implicit solvation. The effects of the protein environment are also included by means of a hybrid quantum mechanical/molecular mechanical (QM/MM) approach, using PM6/AMBER and B3LYP/AMBER schemes. Finally, linear-scaling DFT methods have also been applied to evaluate energetic features of the large motif, and the result obtained for the binding free energy of the CO2 underlines the importance of the accurate modelling of the surrounding protein milieu using a full DFT description.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.