Abstract

Influence of hydration on the Watson–Crick guanine–cytosine hydrogen bonded (h-bonded) base pair (GC) and stacked pair (G/C) was investigated in their first hydration shell. An electrostatic based approach has been used to identify the potential binding sites for water molecules around GC and G/C pairs. Several geometries of the complexes, GC…(H 2O) n and G/C…(H 2O) n ( n=1–6) were investigated using HF/6-31G** and HF/6-31G++** methods. Further minimization calculations were performed at both B3P86/6-31G** and MP2/6-31G** levels to assess the role of electron correlation contribution in the hydration process. It can be concluded from the present findings that the stacked base-pair hydrate better than the corresponding h-bonded base pair, and DNA base pairs can accommodate up to 4–5 water molecules whereas stacked pair do accommodate 5–6 water molecules.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.