Abstract

Transmission electron microscopy of the spermatozoa and spermatogenesis of 11 species (in three suborders Chitonina, Acanthochitonina, Lepidopleurina) of chiton has shown that each species has a sperm with a unique morphology indicating that spermatozoa can be used as a taxonomic character. Although structure is species-specific, similarities between species within suborders and subfamilies can be recognized. The spermatozoa of species from the suborders Chitonina and Acanthochitonina have a head comprising nuclear material only, the anterior portion of which is in the form of a long thin (approximately 80 nm diameter) filament. In many species the centrioles and mitochondria of the mid-piece are lateral in position, the mitochondria often being sited anteriorly alongside the nucleus. By contrast,Leptochiton asellus, a member of the more ancient suborder Lepidopleurina, has a sperm with a head comprising a nucleus and an acrosome. The mid-piece is also more conven­tional in structure with a ring of five or six spherical mitochondria (sited behind the nucleus) that surround the centrioles. The presence of the acrosome inL. asellussuggests that in the more recent chitons the acro­some has been secondarily lost. It is proposed that loss of the acrosome is correlated to a modification in egg-coat thickness. A preliminary examination of the structure of the eggs of three species has shown that those ofL. asellusare surrounded by a very thick chorion (14-30 μm) whereas inAcanthochitona crinitusandDinoplax gigasthere are regions of the chorion that are less than 2 μm thick. The morphological changes that occur during spermatogenesis are very similar in the Chitonina and Acanthochitonina. During spermiogenesis the nucleus elongates to develop a long anterior filament. Chro­matin condensation within the nucleus involves the formation of fibrils that become orientated along its long axis. Closely associated with the elongating nucleus is a manchette. InL. asellus a spherical proacrosomal vesicle appears in the spermatocytes. This vesicle becomes compressed as it matures and simultaneously it migrates to the presumptive anterior end of the spermatid where it invaginates and elongates. Although the pattern of chromatin condensation in the nucleus is similar to that described above, a manchette has not been observed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call