Abstract

The self-assembly of copper(II) ions and 5-(2-(2-hydroxyethoxy)ethoxy)benzene-1,3-dicarboxylic acid ( 2) leads to hollow nanoballs in which 12 dinuclear copper(II) paddle wheel units are interconnected via 24 ligands, as determined by single crystal X-ray structure analysis. The nanoball dissociates in aqueous solutions, and in the presence of an excess of ligand it transforms into a three-dimensional network, but is stable in organic solvents. The thermodynamic stability of the nanoball against dissociation in aqueous solution is studied and compared to simple copper(II) paddle wheel complexes. The results reveal enhanced thermodynamic stability of the nanoball as compared to discrete copper(II) paddle wheel complexes due to chelate effects and positive cooperativity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.