Abstract
Immunodetection of catecholamine biosynthetic enzymes is frequently used for the visualization of central nervous catecholaminergic systems. Because of the method's limited specificity for the different catecholamines, interpretation of the results often presents difficulties. To determine criteria for the identification of dopaminergic, noradrenergic, and adrenergic afferents to the rat amygdaloid complex, comparative immunolabelling for tyrosine hydroxylase (TH), dopamine-beta-hydroxylase (DBH), and phenylethanolamine-N-methyl-transferase (PNMT) was carried out using single- and double-labelling for fluorescence, light- and electron microscopy. The observations were complemented by findings in brainstem and hypothalamic areas. The results indicated that TH-labelling detected preferentially dopaminergic afferents in the lateral central and intercalated amygdaloid nuclei. DBH-labelling detected noradrenergic axons in nuclei lacking PNMT-immunoreactive fibres, and PNMT was a marker for adrenergic axons in the entire complex. For nuclei with combined dense dopaminergic, noradrenergic and/or adrenergic innervation, morphological and immunolabelling characteristics were described which, to a certain extent, enabled identification of the different afferents in anti-TH or anti-DBH-preparations. Using a monoclonal TH-antiserum, noradrenergic and adrenergic axons displayed weaker immunoreactivity than dopaminergic ones, and possessed characteristic morphological features. TH-immunoreactivity in noradrenergic axons differed depending on their origin, and showed intra-axonal compartmentalization. The present study provides a basis for the use of the detection of biosynthetic enzymes in future investigations into the ultrastructure and connectivity of the catecholaminergic amygdala innervation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.