Abstract

This project tested the hypothesis that human erythrocytes, being larger than bovine erythrocytes, would be the more sensitive to sonolysis induced by inertial cavitation. The rationale behind this hypothesis was an earlier demonstration that, among sized populations of erythrocytes, an inverse relation existed between erythrocyte volume and mechanically-induced shear forces in the surrounding medium; viz, the larger the cell, the less shear force required to rupture the cell’s membrane. At low erythrocyte densities ( i.e., approximately 5% hematocrit) the hypothesis was supported; at high cell densities ( i.e., approximately 35% hematocrit) it was not supported. The data are consistent with an ultrasound (US)-induced symmetric implosion of affected gas nuclei as causing the effect at low cell densities; under such conditions there is ample spacing among cells for US-induced symmetric growth and collapse of gas nuclei and the concomitant production of radially-expanding shock waves (which lyse the cells); at high cell densities there is not sufficient spacing among cells for US-induced symmetric growth and collapse of bubbles and an alternative mechanism, possibly asymmetric bubble collapse, becomes operational.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.