Abstract
Reggiana is an autochthonous cattle breed reared mainly in the province of Reggio Emilia, located in the North of Italy. Reggiana cattle (originally a triple-purpose population largely diffused in the North of Italy) are characterised by a typical solid red coat colour. About 2500 cows of this breed are currently registered to its herd book. Reggiana is now considered a dual-purpose breed even if it is almost completely dedicated to the production of a mono-breed branded Protected Designation of Origin Parmigiano-Reggiano cheese, which is the main driver of the sustainable conservation of this local genetic resource. In this study, we provided the first overview of genomic footprints that characterise Reggiana and define the diversity of this local cattle breed. A total of 168 Reggiana sires (all bulls born over 35 years for which semen was available) and other 3321 sires from 3 cosmopolitan breeds (Brown, Holstein and Simmental) were genotyped with the Illumina BovineSNP50 panel. ADMIXTURE analysis suggested that Reggiana breed might have been influenced, at least in part, by the other three breeds included in this study. Selection signatures in the Reggiana genome were identified using three statistical approaches based on allele frequency differences among populations or on properties of haplotypes segregating in the populations (fixation index (FST); integrated haplotype score; cross-population extended haplotype homozygosity). We identified several regions under peculiar selection in the Reggiana breed, particularly on bovine chromosome (BTA) 6 in the KIT gene region, that is known to be involved in coat colour pattern distribution, and within the region of the LAP3, NCAPG and LCORL genes, that are associated with stature, conformation and carcass traits. Another already known region that includes the PLAG1 gene (BTA14), associated with conformation traits, showed a selection signature in the Reggiana cattle. On BTA18, a signal of selection included the MC1R gene that causes the red coat colour in cattle. Other selection sweeps were in regions, with high density of quantitative trait loci for milk production traits (on BTA20) and in several other large regions that might have contributed to shape and define the Reggiana genome (on BTA17 and BTA29). All these results, overall, indicate that the Reggiana genome might still contain several signs of its multipurpose and non-specialised utilisation, as already described for other local cattle populations, in addition to footprints derived by its ancestral origin and by its adaptation to the specialised Parmigiano-Reggiano cheese production system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.