Abstract
A comparative seismic loss analysis is presented for a non-ductile infilled reinforced concrete building evaluating the influence on direct economic losses of different parameters characterizing a building performance model. Propagation of uncertainties to seismic repair cost estimate is investigated in terms of effect of input intensity measures, definition of element fragility and consequence functions specific to non-ductile RC buildings through incremental dynamic analyses and probabilistic performance-based earthquake engineering methodologies. A set of element fragility and consequence functions has been proposed based on experimental data for internal and external beam column joints and on analytical models for masonry infill walls. A quantitative estimate of indirect losses is proposed based on past earthquakes data, incorporating the building inactivity and the delay in the beginning of the reconstruction process. Seismic loss assessment is presented at single hazard levels and critically compared, providing insight into different possible alternatives for performance models implementation. A fully probabilistic life-cycle analysis is carried out to present realistic risk analysis figures for non-ductile reinforced concrete buildings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.