Abstract

BackgroundMany parasitic plants of the genera Striga and Cuscuta inflict huge agricultural damage worldwide. To form and maintain a connection with a host plant, parasitic plants deploy virulence factors (VFs) that interact with host biology. They possess a secretome that represents the complement of proteins secreted from cells and like other plant parasites such as fungi, bacteria or nematodes, some secreted proteins represent VFs crucial to successful host colonisation. Understanding the genome-wide complement of putative secreted proteins from parasitic plants, and their expression during host invasion, will advance understanding of virulence mechanisms used by parasitic plants to suppress/evade host immune responses and to establish and maintain a parasite-host interaction.ResultsWe conducted a comparative analysis of the secretomes of root (Striga spp.) and shoot (Cuscuta spp.) parasitic plants, to enable prediction of candidate VFs. Using orthogroup clustering and protein domain analyses we identified gene families/functional annotations common to both Striga and Cuscuta species that were not present in their closest non-parasitic relatives (e.g. strictosidine synthase like enzymes), or specific to either the Striga or Cuscuta secretomes. For example, Striga secretomes were strongly associated with ‘PAR1’ protein domains. These were rare in the Cuscuta secretomes but an abundance of ‘GMC oxidoreductase’ domains were found, that were not present in the Striga secretomes. We then conducted transcriptional profiling of genes encoding putatively secreted proteins for the most agriculturally damaging root parasitic weed of cereals, S. hermonthica. A significant portion of the Striga-specific secretome set was differentially expressed during parasitism, which we probed further to identify genes following a ‘wave-like’ expression pattern peaking in the early penetration stage of infection. We identified 39 genes encoding putative VFs with functions such as cell wall modification, immune suppression, protease, kinase, or peroxidase activities, that are excellent candidates for future functional studies.ConclusionsOur study represents a comprehensive secretome analysis among parasitic plants and revealed both similarities and differences in candidate VFs between Striga and Cuscuta species. This knowledge is crucial for the development of new management strategies and delaying the evolution of virulence in parasitic weeds.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.