Abstract

BackgroundImmune responses to sandfly saliva have been shown to protect animals against Leishmania infection. Yet very little is known about the molecular characteristics of salivary proteins from different sandflies, particularly from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of the repertoire of these salivary proteins will give us insights into the molecular evolution of these proteins and will help us select relevant antigens for the development of a vector based anti-Leishmania vaccine.ResultsTwo salivary gland cDNA libraries from female sandflies Phlebotomus argentipes and P. perniciosus were constructed, sequenced and proteomic analysis of the salivary proteins was performed. The majority of the sequenced transcripts from the two cDNA libraries coded for secreted proteins. In this analysis we identified transcripts coding for protein families not previously described in sandflies. A comparative sandfly salivary transcriptome analysis was performed by using these two cDNA libraries and two other sandfly salivary gland cDNA libraries from P. ariasi and Lutzomyia longipalpis, also vectors of visceral leishmaniasis. Full-length secreted proteins from each sandfly library were compared using a stand-alone version of BLAST, creating formatted protein databases of each sandfly library. Related groups of proteins from each sandfly species were combined into defined families of proteins. With this comparison, we identified families of salivary proteins common among all of the sandflies studied, proteins to be genus specific and proteins that appear to be species specific. The common proteins included apyrase, yellow-related protein, antigen-5, PpSP15 and PpSP32-related protein, a 33-kDa protein, D7-related protein, a 39- and a 16.1- kDa protein and an endonuclease-like protein. Some of these families contained multiple members, including PPSP15-like, yellow proteins and D7-related proteins suggesting gene expansion in these proteins.ConclusionThis comprehensive analysis allows us the identification of genus- specific proteins, species-specific proteins and, more importantly, proteins common among these different sandflies. These results give us insights into the repertoire of salivary proteins that are potential candidates for a vector-based vaccine.

Highlights

  • Immune responses to sandfly saliva have been shown to protect animals against Leishmania infection

  • The transcripts coding for secretory proteins represent 73% of the total transcripts sequenced in the P. argentipes salivary gland library

  • A protein homologous to lipases from Anopheles gambiae, Drosophila melanogaster and other organisms was found in the P. argentipes cDNA library. We found in this library and in the P. perniciosus cDNA library, a transcript coding for a protein homologous to a pyrophosphatase

Read more

Summary

Introduction

Immune responses to sandfly saliva have been shown to protect animals against Leishmania infection. Very little is known about the molecular characteristics of salivary proteins from different sandflies, from vectors transmitting visceral leishmaniasis, the fatal form of the disease. Further knowledge of the repertoire of these salivary proteins will give us insights into the molecular evolution of these proteins and will help us select relevant antigens for the development of a vector based anti-Leishmania vaccine. Phlebotomine sandflies are vectors of Leishmania parasites, causal agents of leishmaniasis in at least 88 countries. The manifestations of this disease range from the self-healing cutaneous and mucocutaneous forms to the potentially fatal visceral form. Visceral leishmaniasis is caused by parasites of the Leishmania donovani complex: L. donovani, L. infantum and L. chagasi (L. infantum chagasi). There are a limited number of competent sandfly vectors that can transmit parasites within this complex. Phlebotomus argentipes transmits only L. donovani in the India sub-continent, P. ariasi and P. perniciosus transmit L. infantum within southern Europe, and Lutzomyia longipalpis exclusively transmits L. chagasi (L. infantum chagasi) in Central and South America

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call