Abstract

Extensive utilization of silver nanoparticles (AgNP) has raised concerns of their safety profile upon interaction with biological system. In past decade, various nanoparticles (NPs) with excellent antimicrobial potential have been synthesized, a majority of which have struggled with the established toxicity in biological systems. The NPs safety is still a hot debate and various strategies are being adopted to overcome this giant limitation. This paper successfully reports comparative toxicity profiles of previously synthesized antimicrobial NPs in our lab and concludes the effectiveness of biologically synthesized NPs for its safe usage in biological systems. In this study, five of our previously synthesized NPs that showed excellent antimicrobial potential were compared for their in vivo toxicity and corresponding radical scavenging activities. Based on lowest morbidity, mortality, weight loss, toxicity and agglomeration profile, best NPs with highest antimicrobial potentials were screened out and used for further biomedical applications. The previously reported NPs used in this study included Aerva javanica synthesized nanoparticles (AjNPs), Heliotropium crispium synthesized nanoparticles (HcNPs), and violacein capped nanoparticles (VNPs), these showed least toxicity upon in vivo histological analysis. AjNPs among them showed maximum safety and efficacy profile and consistently showed least production of reactive oxygen species, least mortality and morbidity rate as compared to other groups. Present study establishes that all these biologically synthesized NPs and specifically AjNPs can be efficiently employed as antimicrobial agents as they have not exhibited toxic profile and have shown least accumulation into the organs such as liver spleen and kidney.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.