Abstract

The wide variety in country specific fire codes can dramatically affect the fire safety of home furnishings resulting in more or less escape time from structure fires. This study uses three replicates of identical rooms for each of the countries tested (France, United Kingdom, US) to increase reliability of data for a more reliable comparison. France and the US rely on smolder only furniture flammability standards while the United Kingdom relies on a combination of smolder and open flame ignition test. Each test room contained a 3 cushion couch, chair and flat panel television of identical models/manufacturers purchased from the respective countries. Additionally, each room was fitted with an identical coffee table, end table, curtain, and bookcase obtained from Walmart in the United States and 12 kg of books. All rooms were meticulously set-up to ensure comparability of results. Flat panel televisions were purchased from electronic stores in the three countries, all were 1.4 m (55 inch) Samsung FPD LED models of as similar design as possible in the markets purchased. The couches and chairs were the same Ektorp furniture line of identical color purchased from Ikea. All FPD TVs and furniture appeared to be identical. All room burns were conducted in a standard ISO 9705 room. Heat release was measured by oxygen consumption calorimetry and smoke development by light dispersion in the ventilation duct. Acute toxicity measurements were made using FTIR at two collection points, the door way and at crawling height in the center of the room. Other smoke constituents were measured for concentration of PAH, VOC, SVOCs and chlorinated and brominated dioxins and furans. Two separate collection events were performed, before and after white smoke transitioned to black smoke. The time to transition from white to black smoke for the British furnishings was five times as long as that observed for the French and US models. The same is true of the time to flashover. The average pHHR for the British rooms was 200 KW less than the US and 400 KW less than the French rooms. All rooms had pHHR between 2.5 MW and 3.3 MW. Total smoke produced for the British rooms was half that of the French and US and the Peak Smoke was delayed for the British rooms by approximately 12 min. This study illustrated that the UK standard does provide a significantly better performance for an identical size and shaped couch based on time to pHHR, pHHR, time to peak smoke, and total smoke. In addition, the chemical composition of the smoke generated in the room burns featuring UK furniture were less acutely toxic based on HCN and CO emission. The time to toxic levels for these gases was delayed 15 min. The French and US rooms reached 1200 and 1600 ppm for HCN at the doorway in 6 min. The chronic toxicity of the UK rooms also appears to be less based on the lower molecular weight and lower concentration of PAH produced. These results directly contradict results published by Stec and Hull. The condition of the test do affect the results. It is critical to test under realistic conditions to be able to predict the performance of materials in home fires.

Highlights

  • Controversy surrounds fire codes associated with home furnishings and electronics

  • Ignition of the second item, the Ektorp Chair, in these room burns was concurrent with flashover at between 4 min and 5 min

  • There was a difference in the timing of the fire growth for the British configuration room burns based on the ignition source

Read more

Summary

Introduction

Controversy surrounds fire codes associated with home furnishings and electronics. Significant fire risk is associated with large flat panel televisions (FPT) and well-padded furniture; couches, loveseats and chairs [1, 2]. Cal TB 117 regulates the furniture fire performance for home furnishings The changes to this standard in 2013 eliminated the open flame ignition test and rely on smoldering ignition sources to demonstrate fire safety. In France furniture must comply with FR EN 1021-1 [6] which is a smolder only standard Another area of concern is the acute and chronic toxicity of smoke generated in fires. Previous work on couches and flat panel televisions has shown that we can successfully perform these analyses using an ISO 9705 room or SBI calorimetry apparatus [1, 2] This experiment captured heat release and smoke generation data

Experimental
Qualitative Observations
Heat Release Rate Data
Smoke Generation Data
Chemical Composition of Smoke
Conclusions
14. ISO 9705-1

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.