Abstract

Soil amendment with two types of composts: animal manure (AC) and vegetable waste (VC) induced composts have potential to alleviate Cd toxicity to maize in contaminated soil. Therefore, Cd mobility in waste water irrigated soil can be addressed through eco-friendly and cost effective organic soil amendments AC and VC that eventually reduces its translocation from polluted soil to maize plant tissues. The comparative effectiveness of AC and VC at 3% rate were evaluated on Cd solubility, its accumulation in maize tissues, translocation from root to shoot, chlorophyll contents, plant biomass, yield and soil properties (pH, NPK, OM). Results revealed that the addition of organic soil amendments significantly minimized Cd mobility and leachability in soil by 58.6% and 47%, respectively in VC-amended soil over control. While, the reduction was observed by 61.7% and 57%, respectively when AC was added at 3% over control. Comparing the control soil, Cd uptake effectively reduced via plants shoots and roots by 50%, 46% respectively when VC was added in polluted soil. However, Cd uptake was decreased in maize shoot and roots by 58% and 52.4% in AC amended soil at 3% rate, respectively. Additionally, NPK contents were significantly improved in polluted soil as well as in plant tissues in both composts amended soil Comparative to control, the addition of composts significantly improved the maize dry biomass and chlorophyll contents at 3% rate. Thus, present study confirmed that the addition of animal manure derived compost (AC) at 3% rate performed well and might be consider the suitable approach relative to vegetable compost for maize growth in polluted soil.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call