Abstract

Cucumber (Cucumis sativus L.) is a typical monoecism vegetable with individual male and female flowers, which has been used as a plant model for sex determination. It is well known that light is one of the most important environmental stimuli, which control the timing of the transition from vegetative growth to reproductive development. However, whether light controls sex determination remains elusive. To unravel this problem, we performed high-throughput RNA-Seq analyses, which compared the transcriptomes of shoot apices between R2B1(Red light:Blue light = 2:1)-treated and R4B1(Red light:Blue light = 4:1)-treated cucumber seedlings. Results showed that the higher proportion of blue light in the R2B1 treatment significantly induced the formation of female flowers and accelerated female flowering time in this whole study. The genes related to flowering time, such as flowering locus T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO1 (SOC1), were up-regulated after R2B1 treatment. Furthermore, the transcriptome analysis showed that up-regulation and down-regulation of specific DEGs (the differentially expressed genes) were primarily the result of plant hormone signal transduction after treatments. The specific DEGs related with auxin formed the highest percentage of DEGs in the plant hormone signal transduction. In addition, the expression levels of transcription factors also changed after R2B1 treatment. Thus, sex differentiation affected by light quality might be induced by plant hormone signal transduction and transcription factors. These results provide a theoretical basis for further investigation of the regulatory mechanism of female flower formation under different light qualities in cucumber seedlings.

Highlights

  • Sex differentiation of flower buds is an important developmental process, which directly affects the product yield in plants

  • Light quality affects cucumber flowering time Blue light is a strong signal in floral bud formation

  • Floral bud formation and flowering occurred earlier under blue light treatment, while no floral buds were observed under low red irradiance

Read more

Summary

Introduction

Sex differentiation of flower buds is an important developmental process, which directly affects the product yield in plants. Cucumber (Cucumis sativus L.) is a typical monoecious plant with distinct male and female flowers. It has been served as a model system for studying physiological and molecular aspects of sex determination and differentiation in plants (Bai and Xu 2013). Exogenous ethylene treatment induced female flower formation in the cucumber. The ethylene content in gynoecious cucumbers is found to be higher than that of monoecious plants (Trebitsh et al 1987; Rudich et al 1972). Ethylene synthesis genes play an important role in the sex differentiation of the cucumber flowers, such as 1-aminocyclopropane-1-carboxylic acid oxidases (CsACO2)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call