Abstract
BackgroundEarly ripening is an important desirable attribute for fruit crops. ‘Kyoho’ is a popular table grape cultivar in many Asian countries. ‘Fengzao’ is a bud mutant of ‘Kyoho’ and ripens nearly 30 days earlier than ‘Kyoho’. To identify genes controlling early fruit development and ripening in ‘Fengzao’, RNA-Seq profiles of the two cultivars were compared at 8 different berry developmental stages in both berry peel and flesh tissues.MethodsRNA-Seq profiling of berry development between ‘Kyoho’ and ‘Fenzhao’ were obtained using the Illumina HiSeq system and analyzed using various statistical methods. Expression patterns of several selected genes were validated using qRT-PCR.ResultsAbout 447 millions of RNA-Seq sequences were generated from 40 RNA libraries covering various different berry developmental stages of ‘Fengzao’ and ‘Kyoho’. These sequences were mapped to 23,178 and 22,982 genes in the flesh and peel tissues, respectively. While most genes in ‘Fengzao’ and ‘Kyoho’ shared similar expression patterns over different berry developmental stages, there were many genes whose expression were detected only in ‘Fengzao’ or ‘Kyoho’. We observed 10 genes in flesh tissue and 22 genes in peel tissue were differentially expressed at FDR ≤ 0.05 when the mean expression of ‘Fengzao’ and ‘Kyoho’ were compared. The most noticeable one was VIT_214s0030g00950 (a superoxide dismutase gene). This ROS related gene showed lower expression levels in ‘Fengzao’ than ‘Kyoho’ in both peel and flesh tissues across various berry developmental stages with the only exception at véraison. VIT_200s0238g00060 (TMV resistance protein n-like) and VIT_213s0067g01100 (disease resistance protein at3g14460-like) were the two other noticeable genes which were found differentially expressed between the two cultivars in both peel and flesh tissues. GO functional category and KEGG enrichment analysis of DEGs indicated that gene activities related to stress and ROS were altered between the two cultivars in both flesh and peel tissues. Several differentially expressed genes of interest were successfully validated using qRT-PCR.ConclusionsComparative profiling analysis revealed a few dozens of genes which were differentially expressed in the developing berries of ‘Kyoho’ and its early ripening mutant ‘Fengzao’. Further analysis of these differentially expressed genes suggested that gene activities related to ROS and pathogenesis were likely involved in contributing to the early ripening in ‘Fengzao’.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3051-1) contains supplementary material, which is available to authorized users.
Highlights
Ripening is an important desirable attribute for fruit crops
Fruit samples from three vines in 2013 were harvested at the developmental stages corresponding to EL 27, 29, 31, 33, 34, 35, 37, and 38 (EL refers to the modified Eichhorn and Lorenz developmental scale as described by Coombe [2])
The characteristics of these developmental stages are as follows: EL 27 at the beginning of berry setting; EL pea-size berries; EL beginning of bunch closure, berries touching; EL33 characterized by hard green berries; EL 34 just before véraison characterized by green berries, which are starting to soften; EL35 corresponding to véraison; EL involving sugar and anthocyanins accumulation, and active growth; and EL corresponding to harvest time [2]
Summary
Ripening is an important desirable attribute for fruit crops. ‘Kyoho’ is a popular table grape cultivar in many Asian countries. To identify genes controlling early fruit development and ripening in ‘Fengzao’, RNA-Seq profiles of the two cultivars were compared at 8 different berry developmental stages in both berry peel and flesh tissues. A number of transcriptional and metabolomic analyses have been carried out to study the grape berry ripening process at various berry developmental stages, among different cultivars, and in distinct environmental conditions [3,4,5,6]. These studies have uncovered a wealth of developmentally regulated genes in grape berry [7, 8]. Much remains to be understood about the molecular and biochemical events leading to grape ripening [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.