Abstract

In the recent years autonomous flying vehicles are being increasingly used in both civil and military areas. With the advancement of the technology it has become possible to test efficiently and cost-effectively different autonomous flight control concepts and design variations using small-scale aerial vehicles. In this paper the stabilization problem of the quad-rotor rotorcraft using bounded feedback controllers is investigated. Five different types of nonlinear feedback laws with saturation elements, previously proposed for global control of systems with multiple integrators, are applied and tested to control the quad-rotor rotorcraft roll and pitch angles. The results obtained from autonomous flight simulations and real time experiments with the Draganflyer V Ti four-rotor mini-rotorcraft are analyzed with respect to the structural simplicity of the control schemes and the transient performance of the closed-loop system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.