Abstract

The locomotory and ventilatory activities, oxygen consumption, and the intermediary and energy metabolism modifications of a spring and a cave population of the aquatic amphipod crustacean Gammarus minus were investigated in normoxia, severe hypoxia (\(P_{{\text{O}}_{\text{2}} } \) < 0.03 kPa) and subsequent recovery. The aims of this study were to compare (1) the reactions of both populations to these experimental conditions, (2) these results with those obtained on the hypogean amphipod Niphargus, and (3) the degree of adaptation to hypoxia showed by both populations of G. minus. Despite their different origins, both populations of G. minus presented identical responses in all experimental conditions. The lethal time for 50% of the population was about 6 h, and the oxygen consumption about 44 μmol O2/g dw per h in normoxic conditions. The metabolic effects of severe hypoxia and subsequent recovery were significant compared to normoxic conditions, but also similar between both populations for alanine, arginine phosphate, ATP, glycogen and lactate levels. This study (i) underlines the statement that a high resistance to lack of oxygen is not universally found in subterranean organisms, but is more related to oxygen availability and/or to the energetic state of each subterranean ecosystem, and (ii) highlight the diversity of adaptive responses to an environmental constraint expressed by hypogean crustaceans.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call