Abstract

The inevitable discharge of zinc oxide nanoparticles (ZnO NPs), from consumer and industrial products, into wastewater treatment plants (WWTPs) has created a need to determine their effect on sludge digestion. In this study, the effect of particle size (30 nm and 100 nm), type (coated and non-coated), and dose (6, 75, and 150 mg/g feed total solids (TS)) of ZnO NPs on anaerobic sludge digestion was studied under mesophilic (35 °C) and thermophilic (55 °C) conditions. The effect was investigated in two stages with different digester feeding regime: (1) batch biochemical methane potential (BMP) assays, and (2) semi-continuously fed reactors. Results showed that ZnO NPs were inhibitory at medium and high levels (75 and 100 mg ZnO/g TS, respectively). Coated NPs created less inhibition than non-coated NPs. Thermophilic bacteria were more sensitive to ZnO NPs compared with mesophilic bacteria. For the non-coated ZnO NPs, only the mesophilic batch assays were able to recover at the medium concentration and the thermophilic reactors presented chronic inhibition and could not recover. As a beneficial outcome, coated ZnO NPs significantly reduced odor-causing volatile sulfur compounds in digester headspace in comparison with the non-coated NPs. In summary, the condition in which ZnO NPs would have little to no effect would be 6 mg/g TS-coated ZnO NPs under mesophilic conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.