Abstract

The method for deducing expressions of arbitrary geometrical structures is studied in detail by using the Fourier series expansion. The dispersion curves of the slow-wave structures (SWSs) with the cosinoidal,rapezoidal and rectangular corrugations are obtained by numerical calculation. Moreover,the longitudinal resonance properties of the finite-length coaxial SWS are investigated with the S-parameter method. It is proposed that the introduction of a well designed coaxial extractor to slow-wave devices can help to reduce the period-number of the SWS,which not only can make the devices more compact,but also can avoid the destructive competition between various longitudinal modes. Furthermore,a compact L-band coaxial relativistic backward wave oscillator (RBWO) is investigated and optimized in detail with particle-in-cell (PIC) methods (KARAT code). In the preliminary experiments,the measured microwave frequency is 161 GHz,with a peak power level of above 102 GW,when the diode voltage is 670 kV and the current is 107 kA. The pulse duration (full-width at half-maximum) of the radiated microwave is 22 ns.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call