Abstract
As the Internet of medical Things emerge in the field of medicine, the volume of medical data is expanding rapidly and along with its variety. As such, clustering is an important procedure to mine the vast data. Many swarm intelligence clustering algorithms, such as the particle swarm optimization (PSO), firefly, cuckoo, and bat, have been designed, which can be parallelized to the benefit of mass data computation. However, few studies focus on the systematic analysis of the time complexities, the effect of instances (data size), attributes (dimensionality), number of clusters, and agents of these algorithms. In this paper, we performed a comparative research for the PSO, firefly, cuckoo, and bat algorithms based on both synthetic and real medical data sets. Finally, we conclude which algorithms are effective for the medical data mining. In addition, we recommend the more suitable algorithms that have been developed recently for the different medical data to achieve the optimal clustering.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.