Abstract

Ferryl-oxo species have been recognized as a key oxidant in many heme and non-heme enzymes. Recently, less-characterized ferric-superoxo species have been found or suggested to be another electrophilic oxidant. Reactivity of several vital ferryl-oxo and ferric-superoxo model complexes was examined by DFT calculations. Reactivity is found to correlate well with thermodynamic driving force and can increase with higher electrophilicity of the oxidant. Reactivity of the ferric-superoxo oxidants generally is not "superior" to the ferryl-oxo ones. Compared to the high-spin non-heme ferric-superoxo, the lower reactivity of low-spin heme ferric-superoxo, seldom utilized in nature, can be attributed to lower electrophilicity and more pronounced quenching of anti-ferromagnetic coupling between the ferric and superoxo parts. The present comparison should shed some light on mechanistic strategies in heme and non-heme enzymes and provide clues to rational design of ferric-superoxo oxidants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call