Abstract
The nonintegrable Dicke model and its integrable approximation, the Tavis-Cummings model, are studied as functions of both the coupling constant and the excitation energy. The present contribution extends the analysis presented in the previous paper by focusing on the statistical properties of the quantum fluctuations in the energy spectrum and their relation with the excited-state quantum phase transitions. These properties are compared with the dynamics observed in the semiclassical versions of the models. The presence of chaos for different energies and coupling constants is exhibited, employing Poincar\'e sections and Peres lattices in the classical and quantum versions, respectively. A clear correspondence between the classical and quantum result is found for systems containing between $\mathcal{N}=80$ and 200 atoms. A measure of the Wigner character of the energy spectrum for different couplings and energy intervals is also presented employing the statistical Anderson-Darling test. It is found that in the Dicke model, for any coupling, a low-energy regime with regular states is always present. The richness of the onset of chaos is discussed both for finite quantum systems and for the semiclassical limit, which is exact when the number of atoms in the system tends to infinite.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.