Abstract

Onychomycosis is one of the most common toenail fungal infections that affect the quality of life of many patients. Long-term and noninvasive monitoring of morphological changes of onychomycosis-affected nail plate aids the medication process and provides comfort for patients. However, existing medical and dermatological imaging methods have various types of limitations in nail investigation due to low resolution, lack of volumetric data, the necessity of highly trained personnel for image analysis, and the variety of protocols. In this study, qualitative monitoring-based quantitative assessments were performed to assess the morphological changes of onychomycosis-affected toenail for 15 consecutive weeks using high-resolution optical coherence tomography (OCT). Layer intensity and surface roughness measuring algorithms were applied to two-dimensional OCT cross-sectional images to detect gradual changes in the morphological structure of the diseased toenail. A depth intensity profile and the angle formed between the nail plate and nail fold were also used to analyze the thickness and shape of the toenail plates, respectively. The quantitative and morphological monitoring results revealed significant changes in the toenail structure before and during the treatment process, confirming the healing of the diseased toenail. Therefore, the proposed noninvasive optical analysis approach can be applied to monitor nail abnormalities and evaluate the process of diseased toenail medication.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call