Abstract

The structures and amounts of glycosaminoglycan (GAG) produced by cells have attracted much interest because GAG biosynthesis activity can change in cellular processes such as disease and differentiation. β-Xylosides, also called saccharide primers, have been used as artificial acceptors not only to generate GAG oligosaccharides in cells and tissues but also to investigate their biosynthetic pathways. Various analytical methods have been applied to confirm the structure and amounts of GAG oligosaccharides elongated using saccharide primers, yet sample preparation processes such as solid-phase extraction in analysis can cause experimental error and disrupt accurate comparative quantification of glycosylated products. In this study, we developed a new quantification method using a deuterium-labeled saccharide primer. The "heavy" and "light" primers were chemically synthesized, and priming abilities were confirmed by liquid chromatography-tandem mass spectrometry. Relative peak areas of light/heavy products showed good linearity and were well correlated with the theoretical amounts of glycosylated products. Then, as a validation study, we carried out a biosynthesis inhibition assay using known GAG biosynthesis inhibitors. According to the relative quantification using saccharide primers, differences in the mode-of-action among the four GAG biosynthesis inhibitors were dependent on the GAG biosynthetic pathway. Our results indicate that the method will likely forge a new path for comparative glycosaminoglycomics using cultured cells and tissues.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.