Abstract

The present QSAR study attempts to explore the structural and physicochemical requirements of substituted 1-(3,3-diphenylpropyl)-piperidinyl amides and ureas for CCR5 binding affinity using linear free energy-related (LFER) model of Hansch. QSAR models have been developed using electronic (Hammett σ), hydrophobicity ( π), and steric (molar refractivity and STERIMOL L, B1, and B5) parameters of phenyl ring substituents of the compounds along with appropriate dummy variables. Whole molecular descriptor like partition coefficient (log P calcd) was also tried as an additional descriptor. Statistical techniques like stepwise regression, multiple linear regression with factor analysis as the data preprocessing step (FA-MLR), partial least squares with factor analysis as the preprocessing step (FA-PLS), principal component regression analysis (PCRA), multiple linear regression with genetic function approximation (GFA-MLR), and genetic partial least squares (G/PLS) were applied to identify the structural and physicochemical requirements for the CCR5 binding affinity. The generated equations were statistically validated using leave-one-out technique. The quality of equations obtained from stepwise regression, FA-MLR, FA-PLS, and PCRA is of acceptable statistical range (explained variance ranging from 71.9% to 80.4%, while predicted variance ranging from 67.4% to 77.0%). The GFA-derived models show high intercorrelation among predictor variables used in the equations while the G/PLS model shows lowest statistical quality among all types of models. The best models were also subjected to leave-25%-out crossvalidation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.