Abstract

Alkylhydroperoxide reductase (AhpC), a 1-Cys peroxiredoxin is well known for maintaining the cellular homeostasis. Present study employs proteome approach to analyze and compare alterations in proteome of Anabaena PCC7120 in overexpressing (An+ahpC), deletion (An∆ahpC) and its wild type. 2-DE based analysis revealed that the major portion of identified protein belongs to energy metabolism, protein folding, modification and stress related proteins and carbohydrate metabolism. The two major traits discernible from An+ahpC were (i) augmentation of photosynthesis and nitrogen fixation (ii) modulation of regulatory network of antioxidative proteins. Increased accumulation of proteins of light reaction, dark reaction, pentose phosphate pathway and electron transfer agent FDX for nitrogenase in An+ahpC and their simultaneous downregulation in AnΔahpC demonstrates its role in augmenting photosynthesis and nitrogen fixation. Proteomic data was nicely corroborated with physiological, biochemical parameters displaying upregulation of nitrogenase (1.6 fold) PSI (1.08) and PSII (2.137) in An+ahpC. Furthermore, in silico analysis not only attested association of AhpC with peroxiredoxins but also with other players of antioxidative defense system viz. thioredoxin and thioredoxin reductase. Above mentioned findings are in agreement with 33–40% and 40–60% better growth performance of An+ahpC over wild type and An∆ahpC respectively under abiotic stresses, suggesting its role in maintenance of metabolic machinery under stress. SignificancePresent work explores key role of AhpC in mitigating stress in Anabaena PCC7120 through combined proteomic, biochemical and in silico investigations. This study is the first attempt to analyze and compare alterations in proteome of Anabaena PCC7120 following addition (overexpressing strain An+ahpC) and deletion (mutant An∆ahpC) of AhpC against its wild type. The effort resulted in two major traits in An+ahpC as (i) augmentation of photosynthesis and nitrogen fixation (ii) modulation of regulatory network of antioxidative proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.