Abstract

Lutoids are specific vacuole-based organelles within the latex-producing laticifers in rubber tree Hevea brasiliensis. Primary and secondary lutoids are found in the primary and secondary laticifers, respectively. Although both lutoid types perform similar roles in rubber particle aggregation (RPA) and latex coagulation, they vary greatly at the morphological and proteomic levels. To compare the differential proteins and determine the shared proteins of the two lutoid types, a proteomic analysis of lutoid membranes and inclusions was performed, revealing 169 proteins that were functionally classified into 14 families. Biological function analysis revealed that most of the proteins are involved in pathogen defense, chitin catabolism, and proton transport. Comparison of the gene and protein changed patterns and determination of the specific roles of several main lutoid proteins, such as glucanase, hevamine, and hevein, demonstrated that Chitinase and glucanase appeared to play crucial synergistic roles in RPA. Integrative analysis revealed a protein-based metabolic network mediating pH and ion homeostasis, defense response, and RPA in lutoids. From these findings, we developed a modified regulation model for lutoid-mediated RPA that will deepen our understanding of potential mechanisms involved in lutoid-mediated RPA and consequent latex coagulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.