Abstract

To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence.

Highlights

  • Modified crops (GMCs) were first introduced to commercial agriculture in 1996, and approximately 181.5 million hectares of genetically modified crops (GMCs) were grown worldwide in 2014

  • We found that the proteomic patterns were not substantially altered in the leaf proteome between the phytase-transgenic maize and its isogenic type

  • According to this concept, when comparing a new GM crop with a traditional counterpart that is generally accepted as safe based on the history of human food usage, the new GM crop is considered substantially equivalent to and as safe as its conventional counterpart if no sizeable differences are detected in the composition (OECD, 1993; FAO/WHO, 2000; EFSA, 2006)

Read more

Summary

Introduction

Modified crops (GMCs) were first introduced to commercial agriculture in 1996, and approximately 181.5 million hectares of GMCs were grown worldwide in 2014. These GMCs have produced significant benefits over the past two decades (Clive, 2015). Despite the obvious positive effects of GMCs, public controversy over on the unintended, unexpected, and uncontrolled negative effects of GMCs are still ongoing. There is considerable concern that the introduction of exogenous DNA sequences and enzymes into the target plant genome in GMCs might result in unintended effects, and these negative effects may affect both human health and the environmental safety (Ioset et al, 2006).

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.