Abstract

A new Candida parapsilosis ACCC 20221 (C. parapsilosis ACCC 20221) whole-cell catalyst with a high phenolic glycoside esters synthesis activity and large biomass was obtained after culture with glucose. The possible mechanisms were revealed by using comparative proteomics. It found the expression of proteins involved in post-translational modification, protein turnover, and chaperone, and RNA processing and modification was upregulated, which ensured the metabolic balance and accurate translation, correct folding, and post-translational modification of proteins, thus enhancing the production of lipases in C. parapsilosis ACCC 20221 cultured with glucose. Moreover, the glycolysis pathway, tricarboxylic acid cycle, and fatty acids synthesis were enhanced, while the β-oxidation of fatty acids was weakened in C. parapsilosis ACCC 20221 cells cultured with glucose, which led to an increase in energy generation and cell membrane synthesis; thus, large biomass was obtained. In addition, CCE40476.1 and CAC86400.1, which were likely to exert arbutin esters synthesis activity in C. parapsilosis ACCC 20221, were screened, and it was found that vinyl propionate could easily enter the catalytic pocket of CCE40476.1 and form hydrogen bonding interactions with Leu191 and Ser266.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.