Abstract

The spikelet number per panicle is established in the early stages of panicle development. Nitrogen fertilizer application before panicle initiation is known to increase spikelet number, which is one of the most important traits in rice productivity determination. However, the basic proteomic mechanism remains poorly understood. The present study shows that nitrogen fertilizer significantly increased spikelet number and grain yield in rice. Proteomic variations were further analyzed in young panicles at the secondary panicle branch initiation and spikelet meristem initiation under nitrogen fertilizer treatment. Proteomic analysis identified 63 proteins with significant differential accumulation in young panicles under nitrogen fertilizer treatment. Proteolysis represents the largest functional category, which suggests that protein degradation is an important pathway in the response to nitrogen fertilizer. Importantly, nitrogen fertilizer significantly reduced 14-3-3 proteins, which interact with key enzymes associated with carbon and nitrogen metabolism, and the rice FT homologue Hd3a. Real-time PCR revealed that Hd3a signaling is also repressed by nitrogen fertilizer in leaves. This study contributes to a better understanding of the regulation of nitrogen fertilizers in the flowering pathway leading to panicle development. The identification of novel genes provides new insight into the profound impacts of nitrogen fertilizer on panicle development in rice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call