Abstract

The metabolic mechanism of excessive exopolysaccharide (BMPS) synthesis by Bacillus mucilaginosus CGMCC5766 under CaCO3 addition was investigated. Under CaCO3 (5 g/L), the maximum BMPS concentration reached 28.4 g/L, which was 11.2 folds higher than that of the control. Proteomics was then used to analyze the proteins with substantial differences expressed by B. mucilaginosus with and without CaCO3 addition. The proteomic results revealed that the enzymes related to the central metabolic pathway, amino acid biosynthesis, and nucleotide metabolism were depressed. By contrast, the UDP–glucose pyrophosphorylase involved in BMPS biosynthesis was overexpressed and converted metabolic flux from the biomass accumulation to the biosynthesis of BMPS. This research provides a new and widened perspective into understanding the mechanism of BMPS biosynthesis and applying theoretical and practical significance for the improvement of BMPS production from B. mucilaginosus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call