Abstract
Waterlogging is a common abiotic stress in both natural and agricultural systems, and it primarily affects plant growth by the slow oxygen diffusion in water. To sustain root function in the hypoxic environment, a key adaptation for waterlogging tolerant plants is the formation of adventitious roots (ARs). We found that cucumber waterlogging tolerant line Zaoer-N seedlings adapt to waterlogging stress by developing a larger number of ARs in hypocotyls, while almost no AR is generated in sensitive line Pepino. To understand the molecular mechanisms underlying AR emergence, the iTRAQ-based quantitative proteomics approach was employed to map the proteomes of hypocotyls cells of the Zaoer-N and Pepino under control and waterlogging conditions. A total of 5508 proteins were identified and 146 were differentially regulated proteins (DRPs), of which 47 and 56 DRPs were specific to tolerant and sensitive line, respectively. In the waterlogged Zaoer-N hypocotyls, DRPs related to alcohol dehydrogenases (ADH), 1-aminocyclopropane-1-carboxylicacid oxidases, peroxidases, 60S ribosomal proteins, GSDL esterases/lipases, histone deacetylases, and histone H5 and were strongly overrepresented to manage the energy crisis, promote ethylene release, minimize oxidative damage, mobilize storage lipids, and stimulate cell division, differentiation and growth. The evaluations of ethylene production, ADH activity, pyruvate decarboxylase (PDC) activity and ethanol production were in good agreement with the proteomic results. qRT-PCR analysis of the corresponding 146 genes further confirmed the accuracy of the observed protein abundance. These findings shed light on the mechanisms underlying waterlogging triggered cucumber ARs emergence, and provided valuable information for the breeding of cucumber with enhanced tolerance to waterlogging.
Highlights
Waterlogging is described as the saturation of the soil with water around the plant roots, and constitutes one of the most severe abiotic stresses for plant growth and development (Sairam et al, 2009)
The present study showed that adventitious roots (ARs) primordia emergence and visible on the cucumber hypocotyls surface 2 days after waterlogging, the number of ARs significantly increased in Zaoer-N compared with Pepino 7 days after waterlogging, and the SPAD value in the leaves was significantly higher in Zaoer-N than in Pepino (Table 1)
These observations indicated that Zaoer-N adapted produced by glycolysis and fermentation when compared with 30 ∼ 36 mol ATP produced by aerobic respiration (Bailey-Serres and Voesenek, 2008)
Summary
Waterlogging is described as the saturation of the soil with water around the plant roots, and constitutes one of the most severe abiotic stresses for plant growth and development (Sairam et al, 2009). The availability of oxygen for respiration is blocked in waterlogged organs because of gas diffusion in water is about 103 times slower than that in the air (van Veen et al, 2014) To sustain energy supply, it is essential for the waterlogged organs to switch over to anaerobic mode for energy production (Jackson and Colmer, 2005; Xu et al, 2014). Some species adapted to waterlogging stress by faster stem/hypocotyls elongation that enable the shoot to regain contact with the open atmosphere, such as Rumex and rice (Evans, 2004; Jiang et al, 2010)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.