Abstract

The main symptom of acute glaucoma is acute ocular hypertension (AOH), which leads to the death of retinal ganglion cells (RGCs) and permanent loss of vision. However, effective treatments for these conditions are lacking. This study aimed to identify major regulators and overall protein changes involved in AOH-induced RGC death. Proteomic patterns of the retinal protein extracts from the AOH and sham groups were analyzed using mass spectrometry (MS), followed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses.Proteomic analysis revealed 92 proteins in the AOH group compared to the control group; 58 proteins were upregulated and 34 were downregulated. Alterations in fatty acid-binding protein 7 (FABP7) and caveolin-1 (Cav-1), which are related to fatty acid metabolism and ocular inflammatory signaling, were detected using western blotting and biochemical assays. Variations in the expression of galectin-1 (Gal-1), S100 calcium-binding protein A6 (S100a6), and visinin-like protein-1 (VILIP) have been associated with neuronal ischemia. Our investigation demonstrates that neuroinflammation and fatty acid metabolism are involved in retinal impairment following AOH, suggesting a possible treatment approach for acute glaucoma.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.