Abstract

To determine whether comparative proteomics could detect differential protein expression after lung irradiation in two mouse strains with different radiation responses, lung proteins were subjected to two-dimensional orthogonal liquid-phase separations, with chromatofocusing in the first dimension and nonporous silica reverse-phase high-performance liquid chromatography (NPS-RP-HPLC) in the second. Five weeks after 12 Gy whole-lung irradiation, 15 and 31 proteins had significantly altered expression levels in C3H/HeJ (less likely to develop lung fibrosis) and C57BL/6J mice (more likely to develop lung fibrosis), respectively. These proteins were analyzed by HPLC-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) and identified by matching sequences in a peptide database. The proteins are associated with redox, energy consumption, glycolysis, or chromatin/ RNA structure formation. Five of the six redox-related proteins, including superoxide dismutase 1 (SOD1), cytochrome c oxidase, glutamate dehydrogenase, biliverdin reductase, peroxiredoxin and carbonyl reductase, were down-regulated in the irradiated C57BL/6J mice, whereas SOD1, sulfurtransferase and carbonyl reductase increased in the irradiated C3H/ HeJ mice. Thus decreased antioxidant proteins in the irradiated C57BL/6J mice may be correlated with increased early lung toxicity. Changes in SOD1 and 8-hydroxydeoxy-guanosine (8-OHdG, an oxidative stress marker) were further confirmed by immunohistochemistry and/or Western blot analysis. These data suggest that a proteomics approach has the potential to detect protein changes relevant to early lung toxicity after irradiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.