Abstract

BackgroundRice (Oryza sativa L.) is a thermophilic crop vulnerable to chilling stress. However, common wild rice (Oryza rufipogon Griff.) in Guangxi (China) has the ability to tolerate chilling stress. To better understand the molecular mechanisms underlying chilling tolerance in wild rice, iTRAQ-based proteomic analysis was performed to examine CTS-12, a major chilling tolerance QTL derived from common wild rice, mediated chilling and recovery-induced differentially expressed proteins (DEPs) between the chilling-tolerant rice line DC90 and the chilling-sensitive 9311.ResultsComparative analysis identified 206 and 155 DEPs in 9311 and DC90, respectively, in response to the whole period of chilling and recovery. These DEPs were clustered into 6 functional groups in 9311 and 4 in DC90. The majority were enriched in the ‘structural constituent of ribosome’, ‘protein-chromophore linkage’, and ‘photosynthesis and light harvesting’ categories. Short Time-series Expression Miner (STEM) analysis revealed distinct dynamic responses of both chloroplast photosynthetic and ribosomal proteins between 9311 and DC90.ConclusionCTS-12 might mediate the dynamic response of chloroplast photosynthetic and ribosomal proteins in DC90 under chilling (cold acclimation) and recovery (de-acclimation) and thereby enhancing the chilling stress tolerance of this rice line. The identified DEPs and the involvement of CTS-12 in mediating the dynamic response of DC90 at the proteomic level illuminate and deepen the understanding of the mechanisms that underlie chilling stress tolerance in wild rice.

Highlights

  • Rice (Oryza sativa L.) is a thermophilic crop vulnerable to chilling stress

  • To understand how CTS-12 mediated the mechanisms underlying chilling stress responses at the proteomic level, hydroponically cultured rice seedlings were subjected to chilling stress and recovery following an optimal treatment scheme (Fig. 1a)

  • The results suggested that the CTS-12 might mediate the chilling-induced cold acclimation and de-acclimation of the abundance of photosynthetic and ribosomal proteins in the periods of chilling and recovery

Read more

Summary

Introduction

Rice (Oryza sativa L.) is a thermophilic crop vulnerable to chilling stress. common wild rice (Oryza rufipogon Griff.) in Guangxi (China) has the ability to tolerate chilling stress. Chilling stress is one of the most common abiotic stresses and can cause severe injury in all stages of rice growth with seedling stage being one of the most vulnerable to chilling stress. The accumulating ROS cause oxidative stress, which damages the plant cell membrane, decreases enzyme activity, and inhibits the rate of photosynthesis and protein translation [3, 4]. PtrbHLH, a citrus (Poncirus trifoliata) basic helix-loop-helix (bHLH) transcription factor, functions in chilling tolerance by positively regulating POD-mediated ROS scavenging [6]. The mechanisms underlying the rice chilling stress response remain elusive, a chilling-tolerance gene, COLD1, which encodes a trans-membrane protein that regulates G-protein-dependent low-temperature sensing and is required for the development of cold tolerance, has recently been cloned and functionally characterized in rice [10]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call